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1 Introduction

In recent years there is a growing interest in Unmanned Aerial Vehicles (UAVs).
With time drones are becoming more accessible, more advanced and with en-
hanced abilities. This make UAVs ideal for wide number of applications such
as: tracking, deliveries, ground assessment, etc. In order to deploy a fully au-
tonomous UAV system, the system has to have certain basic capabilities, like
the ability to autonomously land. This problem can be split into sub-tasks,
some of them are:

1. finding and evaluating possible landing sites
2. finding an optimal approach path to the landing site
3. avoiding obstacles and moving objects during flight

In this work we focus on 1. Another issue is that the UAV must determine its
landing site in real-time using on board limited computational resources. The
above calls for an efficient(in terms of memory and compute time) method that
can recognize many different types of landing sites. We chose to use image se-
mantic segmentation as the core of our method, solely using on board monocular
camera.

2 Related Work
2.1 Landing Site Detection(LSD)

Different approaches to the subjects differ in some key categories:
1. Definition of a landing site
2. Sensors used

3. Using prior knowledge



Landing Site Definition Some studies of the subject focus on searching for
a specific pattern to land on, for example a Helipad [35]. The more challenging
of finding a landing site "In The Wild”, i.e. landing on a site that is not built
specifically for that purpose, is also considered in many papers, for example in
[19] the authors filter out from high altitude the places that are not suitable for
landing using features extracted via classical Computer Vision techniques and
an SVM classifier. In [11, 16, 18] The authors focus on the geometric properties
of the terrain, preferring sites that are flat, smooth and clear of obstacles. In our
work we use the fact that a dense urban environment is highly structured, and
if detect certain structures (like an empty parking lot) we can be quite certain
that it is a good landing site.

Sensors Most of studies mainly use vision for the task, some like ours use

vision only - [16, 22], some combined with inertial measurements [11] to pre-
form geometric analysis of the terrain, and some combine inputs from depth
cameras [18]. Another popular sensor that can be used is Li-DAR [17, 3]. Each

sensor has it’s trade-offs - more sensors means heavier payload and higher power
consumption. Depth cameras usually have a limited depth range around 30m.
Li-DAR sensor give better range and higher accuracy, but are more complicated
to use. Using visual input combined with deep learning techniques seems highly
promising since the success it has had in other tasks.

Prior Knowledge Some revisited studies also utilize data that is known in
advance about the environment, to allow offline computations and avoid some
of the computations needed during the mission [7, 1]. In this work we assume
that this is made in another module in the system.

2.2 Semantic Segmentation

In recent years there are significant improvements in semantic segmentation
methods. An important milestone in the evolution of semantic segmentation
problem was the utilization of models based on fully convolutional network (FCNs)
lead by [15]. Later on, those methods outperformed by end-to-end encoder-
decoder models [4, 2]. The goal of this methods is for the encoder to produce
low resolution features maps, and the decoder upsamples those to full input
resolution feature maps for pixel-wise classification. A novel and recent advance
in semantic segmentation problem are the skip-connections that are used to
copy features from the encoder’s layers onto the decoder’s layers. The skip-
connections for semantic segmentation problem introduced in U-net[23] and be-
ing used in many state-of-the-art models [33, 21, 5]. The skip connections feeds
deeper layers with activations of early layers and adds alternative paths for the
gradients to backpropagate. Resulting the ability to train deeper networks.



3 Problem Description

The final goal of this work is to enable a fully autonomous UAV to safely land
in a dense urban environment.

3.1 Scenario

The scenario that we are considering is of a drone hovering at high altitude of
about 400 meters above a dense urban zone. The drone descends and at the
same time is trying to locate a safe landing site, without knowing where to land
in advance. The drone is equipped with multiple color cameras, Li-DAR and
depth camera sensors, and has some partial prior knowledge of the area beneath
it. The drone has limited power and payload, thus the mission is limited in time,
computational resources, and movement.

3.2 The System

This work is part of a larger work on building a system that can accomplish
the task above. The system is split into modules, where every module tackles a
different part of the problem. Our module is called Oracle, and it is tasked with
extracting information from sensory input for the Decision Making module to
use. Our module is memory-less, which means that it operates independently for
every input it is given, we assume that the Decision Making module maintains
and integrates the information gained over time. To simplify the problem for
now, we decided to use only color images as input to our module, also this
is arguably the sensory input that provides the richest information about the
environment.

3.3 Problem Formulation

The information that we want to provide to the Decision Making module
(will be referred to as System) given an input image I, is a score ranging from
0 to 1 for each pixel in that image, S. Formally:

Ief0,1)f*Wxs =1
Selo,1)W=¢

where the image resolution is of height H and width W, and it is RGB
encoded with 3 channels. Entries with high values (close to 1) in S will be
interpreted as pixels that are associated with a good landing site that we would
like to land on, and entries with low values (close to 0) will be interpreted as
pixels that are associated with places that are risky, and we would like to avoid
landing on them. We can formalize this notion that the entry S[i,j] is the



probability of safely landing on the place projected onto pixel [i, j] in the image
1.

Finally, the task of the Oracle is to be a mapping from I to an appropriate
S:

S = Oracle(I) (1)

4 Solution

4.1 High Level Description

The Oracle takes as input a RGB encoded image I, taken from a monocular
camera. The Oracle outputs is a 2D scores map: S, each pixel in the scores map
Sli, 7], represents how likely for that pixel to be a part of a potential landing
zone. To accomplish this, We define a set of classes C' that are interesting to us.
We define a mapping from classes in C' to a real number in [0, 1] that represents
how safe is that class for landing on, Score:

Score : C' — [0,1] (2)

assigning each class with a score, the higher the score is, the better this class
as a landing site. We use a CNN model My to find a pixel-wise segmentation
of an input image to the classes in C. The M in that notation represents the
model’s architecture, and 6 represents the learnable parameters of the model.
The CNN model My is a function from the image space, to an intermediate
space, that associate with each pixel [¢, j] a real number value, for each one of
the different classes:

My : T — REXWX|C] (3)
My(I) = CPL (4)

CPL stands for Class Probability Logits. To get the model’s predicted Class
Probabilities CP, i.e. for each pixel [i, j], a vector of |C| dimensions, where the
i’th entry is the probability of that pixel to belong to the i’th class in C', We
take the Softmax operation:

Softmaz : R™ — [0,1]"
Softmazx(z) =y

eri

For each entry C'PL[i,j] € RICl we calculate (note that C'P is of the same
dimensions as CPL):
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Figure 1: The Scheme: first the input image 1(a) is processed by the semantic
segmentation model 1(b). Then using the scores for each class, the Oracle
predicts the places that have high probability 1(c) for landing on(red) and places
that we should avoid (blue)

CPli,j] = Softmax(CPL[,7]) (5)

Once we have the class probability vector for each pixel in the image, C P|, j],
we reduce it to a single value in [0, 1] that signifies it’s score, Si, j]. The reduc-
tion function Reduce : [0,1]'°l — [0,1] can be defined in different ways, where
we use the classes scores Score defined in (2) for calculating Reduce. To get
the final score we evaluate for each pixel [i, j]:

Sli, j] = Reduce(CPli, j]) (6)

4.2 Low Level Detailed Description
4.2.1 Segmentation Models

The CNN image segmentation model is the most computationally intensive part
of our solution. Thus we preferred using a relatively small and fast networks.
We experimented with 2 architectures:

BiSeNet [34] In this work, the authors identify a conflict that arises in the
design of Deep Learning models for semantic segmentation. In order to correctly
classify a pixel of an image, we need both context and spatial information. By
context we mean the relation between the given pixel and the entire image. For
example, say we have a task of classifying each pixel either as ’human’ or ’car’
as in Figure 3. A group of red pixels, can be both ’human’ or ’car’. In order to
correctly classify the pixels we need to look at the broader image. By spatial
refers to the near by pixels. This is especially important in identifying patterns
in an image, like a dog’s ear or a wheel’s rim. The problem that arises in the
design of CNN’s is that in order to get context we need a pixel’s prediction
to be affected by a large amount of other pixels(’large receptive field’), and the
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Figure 2: BiSeNet architecture scheme

Figure 3: A man wearing a red shirt, and a red car

way to do that efficiently is to rapidly down-sample the features. This rapid
down-sampling prevents rich spatial features from being develops, so it comes
with a price to the spatial information. The authors try to solve that problem
by creating 2 paths - one with spatial information, where each convolution is
affected by a small number of inputs, and with moderate down sampling, and
a context path, with aggressive down sampling. Then they fuse the 2 paths for
the prediction. In the paper they get to 68.4% mlIoU on the Cityscapes test
set [6] a popular banchmark, and speed of 105 FPS on NVIDIA Titan XP card
with input of 2048 x 1024 resolution images.

Fast-SCNN [21] is a semantic segmentation model consists of Down-sampling,
feature extraction, feature fusion and finally a classifier as shown in Figure 4.
Noting that first layers of a CNN extract low-level features, the down-sampling
block has only three layers. It takes the input image and outputs 1:8 resolution
feature map. Then, the output is passed through a bottleneck residual block in
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Figure 4: Fast-SCNN architecture scheme

the feature extraction part, and also passed to the feature fusion block, compris-
ing a two-branch setup. The feature fusion use simple addition and non linear
function and then passes the output for the classifier. The model leverages many
features from state-of-the-art architectures in order to achieve a fast and low
memory performance, yet having competitive results. A key aspects are using
depth wise separable convolutions(DSConv) [27] and inverse residual blocks[24].
The DSConv consists of channel-wise spatial convolution followed by pointwise
convolution. This method uses less memory and faster rather than the classic
convolution which convolve over the entire volume. Moreover, the model utiliz-
ing efficiently the inverse residual blocks which expand a low-dimensional input
to a higher-dimensional space. In contrast to other architecture, the low resolu-
tion features are shared in the two-branch approach, which helps the model to
be shallow and keep spatiality in later layers. With all of the above the model
achieve 68.0% mlIoU at 123.5 FPS on Cityscapes.

4.2.2 The Reduce Function

We experiment with 2 modes:

Threshold - With the threshold parameter ¢ € (0.5, 1); for each pixel [i, j]
we take the class with the highest probability as predicted by the model (7).
If the probability is greater or equal to the threshold, then we assign the score
of the pixel to be the score of the predicted class, as defined by the mapping
Score. If the condition does not hold, then we simply set it to 0(8).

C[Z’]] = argTax(CP[i,j, CD (7)

(®)

. Score(Cli, j]) CPli,j,Cli,j]] >t
S[i, j] = .
0 otherwise
Weighted Average - In this mode we consider the entire probability dis-
tribution over the different classes that the pixel [i,j], CPJi,j]. We consider
the random variable C[i, j] that takes values in C' that represents the class of



the pixel [z, j], where p(Cli,j] = ¢) = CPJi,j,c]. Then the reduce function is
calculated by taking the expected value of Score(Ci, j]):

Sli, j] = E(Score(Cli, 1)) = Y _ Score(c) - p(Cli, j] = ¢) 9)
ceC
substituting p(C|[i, j] = ¢) = C'PJi, j, ], and writing Score as a vector SV €
[0,1]1€! such that SV[¢] = Score(c), we can write the above as a dot product:

This method makes sense as it also considers the richer information that
the model provides, and takes into account the measure of confidence that the
network has in it’s prediction.

4.3 Kernel Smoothing

Another possible add-on for the reduction function, is to apply a convolution
layer over S with a blurring kernel. This way each score is computed as the
weighted average of neighboring scores, and the weights for closer pixels are
higher. In our problem, this method helps us the penalize pixels with hazardous
objects around it, and also, to get higher scores for centers of possible landing
site. This can be expressed for Kernel K size k X k as:

—k/2 —k/2
S'li,jl =K« Sli,jl= Y Y. Kln,m]-Sli+mn,j+m] (11)

n=—k/2m=—Fk/2

for every pixel [i, j]. We assume that indexes outside of S are padded with zeros

5 Evaluation

5.1 Conditions and settings

Bellow are the setting on which the evaluation was preformed:

5.1.1 Data set

The data set on which the Oracle was evaluated was created using Unreal
Engine and Airsim [25]. The data set was partitioned into 995 samples for the
train set, and 438 samples for the test set.

5.1.2 Hardware

the system was tested in a single CPU-GPU setup, with the fallowing hardware:
GPU: GeForce RTX 2080, CPU: Xeon(R) CPU E5-2683 v4 @ 2.10GHz,
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Figure 5: an image and the segmentation ground truth from the data set



5.1.3 Software

We run on a Linux operating system (Ubuntu), python 3.8, pytorch version
1.5.0.

5.2 Correctness

The correctness is only evaluated for the semantic segmentation model, as
ground truth labels are available for the evaluation.

5.2.1 Metrics Used

Bellow We describe the metrics we evaluated. All are common metrics used
for evaluating semantic segmentation models. The metrics are calculated on
per-image basis.

Notes and Notations

e y denotes the ground truth labels of image pixels, and § denotes the pre-
dicted labels. The predicted labels are taken based on the class that got
the maximum value in the C'PL produced by the model. Formally, for
pixel [, j]:

9li, 4] = argmax{CPLIi, j, c|}

e All the ”per class” metrics bellow are calculated for each class ¢ € C for
the entire set of classes.

e we will denote with N = W - H to be the total number of pixels in an
image.

® [ ondition Tepresents an indicator getting the value 1 if condition is true,
otherwise gets the value 0.

e in all the ”"per class” metrics bellow, we use the term Positive (in True
Positive/False Positive) to describe pixels that are of the class, and by
Negative pixels that are not of that class(i.e., any other class). True
means that the ground truth and the prediction agree on that pixel, False
means that they do not agree.

e We use the shorthand TP - True Positives, TN - True Negatives, FP - False
Negatives, FN - False Negative. We use X|[¢| (X € {TP,TN,FP,FN})
to denote that the results is with respect to class c.

e clearly N=TP+TN+ FP+ FN
1. mean IoU(mIoU) This is just taking the mean over the classes IoU:

2. ToUl¢]

mloU =
IC|
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2. per pixel accuracy This is the total number of pixels that were correctly
classified, divided by the total number of pixels.

L Iytig=ati.q)

er pixel accuracy =
per p Y N

3. per class IoU shorthand for ”Intersection over Union”. This means
taking the Intersection of the pixels that belong to that class both in the
prediction and the ground truth(= T'P[c]), and dividing it by the size of
the Union, the pixels that are labeled of that class in either the ground
truth, prediction or both(= T'P[c] + FP[c¢] + FN|c]). Formally:

pizels[c] = {(i,7) : yli,j] = c}
pizels(c] = {(i.5) = 9li,j] = c}
Intersection|c] = pizels|c] N pizels|c]
Union|c] = pizels|c] U pizels|c]

_ |[Intersection]c]|

ToUlel = |Union|c]|

4. per class accuracy accuracy referrers to the ratio of the True predictions
over all the predictions:
TPlc| + TN|]

accuracy(c] = N

5. per class recall The ratio of between the number of successfully predicted
pixels of the given class, over the total number of actual pixels of the class,
intuitively, the probability of our model to detect a given pixel of that class
given that it is of that class:

B TP|c]
recallle = o PN

6. per class precision The ratio between the number of successfully pre-
dicted pixels of the given class, and the total number of predicted positives.
Intuitively, the probability of a pixel belonging to the given class given that
it was predicted of that class:

.. TP
precision[c] = m

5.2.2 Results

We compared the correctness based on the different segmentation model used.

e Results for class specific metric are shown in figure 8.
e Exact(up to 3 decimal points) per-class IoU is shown in figure 9.

e Results for pixel-wise accuracy and mean IoU are summarized in figure
10.
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Note on accuracy: All accuracy results are biased, as they highly depend on
the distribution of the labels in the dataset. For example, if jut 100 pixels in an
image with a total of 10° pixels are of class pole, and non of them is predicted
to be such, it will still get the accuracy of (10¢ — 100)/10° which is pretty close
to 1 even though we did not detect any pole pixel successfully. We can say
that for rare obstacles, we would like not to miss them, thus we should require
high recall score on those classes, as this implies we have high probability for
detecting them if they are present.

Some pitfalls: When visually inspecting the results of our model, we detected
some issues:

1. Some shutters in buildings with textures similar to those of sidewalks were
mistakenly labeled as ’sidewalk’ instead of ’'building’:

This might be solved with more image samples of those shutters, so the
model will be able to better preform on them.

2. Some parts of the poles are missing in the prediction made by Fast-SCNN
model, can also be related to the low recall score on this class:

This might be to due the low frequency of this class in the dataset, and
might be fixed by changing the train loss function to give extra weight to
classes that are less frequent.

3. Road damage is some times incorrectly labeled, for example:

12



This might be solved by augmenting the data by pasting realistic road
textures on to the roads in the simulation, and increasing the number of
samples of this type in the dataset.

5.3 Speed and Memory

We tested our implementation runtime speed and memory usage in the fallowing
ways:

CPU speed Using python’s time.perf_counter recording it just before running
the module, and after function ends, and counting the time differences. The
results were collected over 100 different test set samples. The histogram of the
results is shown in figure 13.

CUDA speed The CUDA runtime was evaluated using pytorch cuda event
API. Tt is almost identical to the CPU time measurements, except that it
requires synchronization, i.e., making sure that all threads are finished when
recording the end-time, due to the asynchronous nature of GPUs. Results are
shown in figure 16. All runtime speeds of the different modules are shown in
figure 18.

CUDA memory it is important to track CUDA memory usage, as the the
embedded device used will run multiple threads for different parts in the system,
and might be a limiting factor in our system’s performance. We measured peak
memory used during runtime with pytorch cuda memory API. Results are shown
in figure 17. One peculiar result we found is that the complete oracle module
runs with less memory then the segmentation model only. This might be due
to pytorch’s inner workings.

6 Ideas / Notes

Using Li-DAR Integrating the Li-DAR sensory input for our model can re-
sult in increased safety and robustness. The downside is that it might increase
our computational resource usage. Work done in that direction is [17].
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class name segmentation model | mean value
buildings bisenet 0.900
buildings fast scnn 0.967
dense vegetation | bisenet 0.397
dense vegetation | fast scnn 0.679
poles bisenet 0.119
poles fast scnn 0.304
road bisenet 0.916
road fast scnn 0.980
sidewalk bisenet 0.952
sidewalk fast scnn 0.982

Figure 9: Per Class IoU

metric name segmentation model | mean value
mean iou bisenet 0.803
mean iou fast scnn 0.886
pixelwise accuracy | bisenet 0.957
pixelwise accuracy | fast scnn 0.993

Figure 10: All Classes Metrics

Weak Supervision A problem we will face when transferring from the sim-
ulation to a real world scenario is acquiring training data for our segmentation
model. Pixel-wise labeling by humans is not practical. Weak supervision meth-
ods [32, 14, 20] aim to train the segmentation models based on partial labeling,
for example by using image level classification labels or object bounding box
annotations in the images, that are much easier to generate. Thus using weak
supervision can reduce the cost of labeling real images. It is also worth men-
tioning that many data sets with image or object level annotation exists that
can be used during development, like VisDrone.

Synthetic Data Set Augmentation Using synthetic data to train models
has been done many times, for example in [28]. different methods have been
done on transferring models that were trained on synthetic data to predict labels
of real images. One method is Domain Randomization [30, 31]. In this method
we render the scene in different settings, like different textures or lighting. This
forces the model to learn more meaningful features. Another interesting method
is using a model that transforms the synthetic data to look more real, while
preserving the correctness of the ground truth labels [26]. There are many more
methods that can be tested and applied, as in [9].

Formal Verification Formal Verification is using mathematical methods for
proving certain properties of a piece of software. It is relatively immature in the
context of deep learning systems, and current methods can only be applied to
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module segmentation model | mean value
segmentation | bisenet 860709888
segmentation | fast scnn 1034959360
oracle bisenet 239887667
oracle fast scnn 300391936

Figure 17: Memory Usage on CUDA in Bytes

device | module segmentation model | mean value
cpu data conversion input transform bisenet 50.399
cpu data conversion input transform fast scnn 45.864
cpu data conversion output transform | bisenet 9.939
cpu data conversion output transform | fast scnn 11.422
cpu oracle bisenet 459.432
cpu oracle fast scnn 2928.876
cpu segmentation bisenet 393.751
cpu segmentation fast scnn 510.711
cuda oracle bisenet 46.010
cuda oracle fast scnn 26.350
cuda segmentation bisenet 20.344
cuda segmentation fast scnn 11.182

Figure 18: Runtime in m.s. of different parts of the module

analyze only a small model. In the future this methods might enable to build
much more robust models, that can be safely deployed in places where error
might be very costly(like in a city environment) [12, 8, 10, 13, 29].

Tensor RT TensorRT is offered by NVIDIA for optimizing deep learning
models performance by optimizing the software to the NVIDIA hardware it
runs on. It is possible to convert a pytorch trained model to a TensorRT model
using torch2trt. NVIDIA offers a tutorial on it.
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