
 LiveCapCover Spring 2020

 Computer Science Faculty, Technion

 LiveCapCover: Report
 Writers:

 Shai Guendelman
 Izo Sakallah

 Advisor: Oshri Halimi
 GitHub: h�ps://github.com/izosak/LiveCapCover

 LiveCapCover Spring 2020

 Introduc�on
 Our work is mostly based on the LiveCap paper .

 Problem Descrip�on
 In this work, we consider the problem of Live Mo�on Capture , i.e. reconstruct the mo�on of an
 object given some sensory input, in real �me.

 In this work the object of interest is a person, and the sensor is a single color camera. We can
 split the problem into 2 parts:

 1. Firstly we need to acquire a parameterized model of the person, with some of the
 parameters are constant throughout the session, those correspond to the shape of the
 person, and other parameters correspond to the movement, and change over �me to fit
 the observed mo�on. The parameters that change over �me will be called DOF’s,
 shorthand for Degrees Of Freedom .

 2. Secondly we need to find a way to automa�cally es�mate the DOF’s that best fit the
 input we receive from the sensors, here the monocular images.

 Applica�ons
 This problem appears in numerous applica�ons, for example:

 1. Video games - instead of interac�ng with the game through some external controllers,
 players could interact using their own movement. This might yield much more
 immersive experience from their side. For example we can look at Microso�’s Kinect,
 which uses a depth sensor for mo�on capture.

 2. 3d telepresence - now more than ever, people interact remotely through video
 conferencing and other forms of communica�ons. The ability to recreate the same
 movement in 3d in some far away room with only a single camera required can greatly
 increase the richness of the interac�ons.

 3. Correct mo�on capture, if done accurately enough, might be used by physiotherapists
 and personal trainers to iden�fy good or bad movements. It might be even done
 automa�cally, thus improving the quality of physiotherapy and exercise when a person is
 performing it by themselves.

 Related work
 Parametric Human modeling - In the original paper the model of the person tracked has been
 reconstructed from images, and then manually rigged. Different approaches exist depending on
 the usage of the model. SMPL is one of them. In SMPL the decompose a large number of 3d
 scanned models to a small basis that spans their possible 3d shapes, and in those models there

https://gvv.mpi-inf.mpg.de/projects/LiveCap/
https://gvv.mpi-inf.mpg.de/projects/LiveCap/data/livecap.pdf

 LiveCapCover Spring 2020

 are joints that their loca�ons were learned from the 3d scans. They reduce the problem of
 crea�ng the 3d model to finding a set of about 100 parameters.

 Real Time 3d Pose Es�ma�on - In the original paper, VNECT, is used for es�ma�ng the
 movement from the input images. VNECT uses a CNN regressor to es�mate the 3d posi�on of
 each joint in the target person, and the results from the regressor are then used to ini�alize a
 second op�miza�on step that corrects the es�mated pose to align to some skeleton model.
 XNECT is a paper that extends VNECT, to apply its results from a single human, to mul�ple
 humans. VIBE is also a method that combines pose and shape es�ma�on from monocular
 images, based on SMPL body parameters, it es�mates those and uses a Genera�ve Adversarial
 Network (GAN) to train it’s model, es�ma�ng both the shape and the pose at one go.

 Approach
 We will first start with explaining the main parts of the approach of the original work, then we
 will state the differences that we have in our implementa�on.

 Original Work
 The process can be split into 2 phases:

 ● Phase 1: offline preprocessing and model acquisi�on
 ○ 3d reconstruc�on from monocular images, for acquiring the model’s geometry. In

 this part images of the person are taken from different angles, then an ini�al
 mesh is created. This mesh is downsampled to speed up calcula�ons in the next
 phase. The tools used for this part are Agiso� Metashape , and MeshLab .

 ○ Model segmenta�on into different body parts - the images used for the
 reconstruc�on are segmented into their different body parts using the model
 described in Look into Person , we found a usable implementa�on here . Then the
 segmented images are used to assign each model vertex with a label
 corresponding to the body part it belongs to. Later on this label will affect the
 cost of moving this part.

 ○ Rigging a skeleton to the model - this is done using Blender . First the skeleton is
 aligned to the model, then an automa�c algorithm sets the weights for each
 vertex based on the proximity to the joint.

https://github.com/Engineering-Course/LIP_JPPNet

 LiveCapCover Spring 2020

 ● Phase 2: online mo�on capture. This phase is about es�ma�ng the transforma�on of the
 model from ini�al state to the state that best fits the monocular images and our prior
 knowledge(i.e., what we know about real human movement). It is done for each frame.
 Each stage is formulated as a Non Linear Least Squares (NLLS) problem, where we
 minimize the L2 norm of a vector func�on of the target parameters. The method used to
 approximate the solu�on to the NLLS problem is Gauss-Newton(GN) . The cost func�ons
 used in each stage are:

 ○ Stage 1 - rigid pose es�ma�on: the op�miza�on parameters in this stage are the
 model’s rigid 3d transforma�on (6 parameters) and the angles for each joint(~
 30 parameters). The cost is made out of 5 parts:

 ■ 3d - difference between the model joint’s posi�ons and the joint posi�ons
 as predicted by the pose-es�ma�on module for the current image.

 ■ 2d - difference between the model’s projected joints, and the 2d
 predic�on from the pose-es�ma�on module.

 ■ Silhoue�e - we calculate the silhoue�e of the person in the image using
 background subtrac�on , then we calculate the image distance transform
 (IDT) , then we sample a set of our model’s contour ver�ces and take the
 IDT values on the contour ver�ces projected pixels.

 ■ Anatomic - for each joint angle we have a so� maximum and minimum
 values. If the joint passes those values we add the difference from the
 boundary to the cost.

 ■ Temporal - difference between the loca�on in the previous frame of each
 joint, this is due to the small �me interval between 2 frames and we
 know that the joint loca�ons should not be too different.

 LiveCapCover Spring 2020

 ○ Stage 2 - non rigid vertex deforma�on: the op�miza�on parameters in this stage
 is all of the models ver�ces, ~5000. The large number of parameters here is
 efficiently op�mized using a sparse solver, due to the fact that each vertex affects
 only a small part of the cost. This stage's purpose is to capture deforma�ons that
 are not directly caused by joint movement, like clothes wrinkling. The cost now is
 composed of:

 ■ Photo - project each vertex to the image plane, and compare the color of
 the image a�er applying gaussian blurring to it. If the difference between
 the color of the image and the color of the vertex passes some threshold
 then add this difference to the cost.

 ■ Silhoue�e - very similar to the silhoue�e loss in the first step, using the
 same set of contour ver�ces, but when a vertex crosses a region that is
 covered by a different body part with higher priority(this is discovered by
 using a body part mask) we just ignore it.

 ■ Smooth - compares the displacement of each vertex to its neighbors, as
 vectors , and compares them to the displacement a�er the pose
 es�ma�on step. The seman�c label of the vertex determines how high
 the cost for moving the vertex is, the same is true for the Edge cost.

 ■ Edge - compares only sizes of the vectors above, i.e. how much the
 distances from a point to its neighbors had changed from a�er the
 skinning stage.

 ■ Velocity - compares the transla�on of the vertex from its posi�on in the
 previous frame.

 ■ Accelera�on - compares the change in velocity that we observed in the
 last frame and the current frame.

 LiveCapCover Spring 2020

 Difference in our implementa�on:
 ● We did not recreate the en�re paper, but mainly focused on the pose es�ma�on part.
 ● We used python. The paper does not specify it, but we es�mate that the authors used a

 combina�on of c++ and matlab for their implementa�on.
 ● We used VIBE instead of VNECT for 3d pose es�ma�on. This resulted in some mismatch

 in the 3d joints extracted from the image and the model’s 3d joints. S�ll it worked pre�y
 well.

 ● We did not get to real-�me results, due to our use of python and not running on a GPU.

 Planning & Design
 Project Milestones
 When we started working on the project, we set some general milestones that we wanted to
 achieve:

 1. Prepare, research
 a. Read the LiveCap ar�cle thoroughly, and list all the components needed in order

 to implement it.
 b. Experience and use the different libraries, packages and algorithms that are

 needed in order to implement LiveCap’s different components.
 2. Implement

 a. Implement LiveCap’s different components and test each one of them as
 independently as possible.

 b. Put all components together to form LiveCap and test it.
 3. Improve performance

 Iden�fy bo�lenecks in the project and try to reduce them.

 LiveCapCover Spring 2020

 We knew that we weren’t necessarily going to exactly follow these milestones, but they surely
 helped us to focus and organize our work.

 Programming language: Why did we choose Python over C++?
 When we first started working on our project, we were wondering which programming
 language we wanted to use. We had two PLs in mind - C++, because it is the PL that we knew
 and studied best from our degree so far; and Python, because it is a PL with increasing
 popularity amongst the programming community which is known to be easier and faster to
 develop with.

 What are our main requirements from the PL we use in this project?
 ● Code should run fast .

 Our purpose is to implement a real-�me product, and that’s why it’s important for us to
 have code which runs fast.

 ● Code should be easy for development .
 As this is a project in the academy, it is more research inclined and is not meant to be
 released as a product in the industry. Therefore, we knew we would benefit more from
 an agile development process.

 We organized our thoughts in a table:

 C++ vs. Python Pros Cons

 C++ ● Code runs faster
 ● VNect is implemented in C++

 ● Harder to develop with

 Python ● Easier to develop with
 ● Adding any ML algorithm / DL

 network would be easier for
 integra�on, in case we wanted

 ● Code runs slower
 ● Some packages might not

 be available / implemented
 well

 ● Packages don’t always have
 good documenta�on

 At first, while experimen�ng and trying to run and use different components, we began with
 C++, but then finally we decided we prefer an agile development process so we proceeded with
 Python.

 Theore�cal and Technical Background

 LiveCapCover Spring 2020

 Following our very first milestone , we started reading the LiveCap ar�cle. As men�oned in the
 introduc�on , we extracted the following main components needed to implement it:

 ● Facial recogni�on
 ● Background subtrac�on
 ● Rendering of a 3D human model
 ● Rendering an anima�on (Linear Blend Skinning)
 ● Joints detec�on in 3D and 2D

 Then, following our next milestone , we started experimen�ng with all the different libraries and
 packages.

 We went over all components that we knew we needed and we tried to implement and use
 each one independently, in order to make sure we knew how to use all our components so that
 we could finally put everything together.

 Image processing
 Here, we mainly used the OpenCV open source library. We tried using background subtrac�on
 methods available in the library but no�ced that they weren’t good enough for our use because
 they weren't precise enough. We also tried applying OpenCV’s distance transform technique on
 some binary images, which turned out to work perfectly. We also tried using camera calibra�on
 and point projec�on .

 Rendering
 A crucial component in the project is the rendering of our 3D model and of an anima�on.

 Linear Blend Skinning (LBS)
 LBS is a very common algorithm used to deform a 3D Model. It allows anima�ng the model.
 This algorithm is based on a skeletal structure of the model: in addi�on to the mesh the model
 has a skeleton (which is basically a tree of joints), and each vertex in the mesh has a list of joints
 - usually 3 or 4 - that affect this vertex. This list also includes the weights of these joints which
 represent how much each joint affects this par�cular vertex.

 At first, we experimented with OpenGL to render a simple model and an anima�on of it, using
 PyOpenGL and the OpenGL Shading Language (GLSL). We managed to implement this by
 following an excellent Java tutorial series by ThinMatrix that shows how to:

 1. read a 3D model mesh and skeleton data from a collada file,
 2. implement an OpenGL render engine that uses GLSL to:

 a. render a 3D model,
 b. apply LBS algorithm.

 LiveCapCover Spring 2020

 We also followed a few other OpenGL tutorials that helped us with using OpenGL in Python
 (PyOpenGL), as ThinMatrix tutorials are in Java.

 The ThinMatrix tutorials focused on a simple 3D model called “farm boy” and a simple
 anima�on of this model (both the model and its anima�on are saved in a single collada file). We
 managed to implement an OpenGL render engine that renders this farm boy model and its
 anima�on, and the rendering worked quite well. Unfortunately, we later found out that this
 engine didn’t match our needs, for two main reasons:

 1. First, the OpenGL engine worked well only with models whose ver�ces have up to 4
 joints affec�ng them . When we started working with a different human model that had
 6-9 joints affec�ng each vertex we no�ced that the anima�on of the model didn’t work
 well, because our engine cuts off extra joints and counts only the top 3 joints with the
 largest weights, and suppor�ng more joints in GLSL felt counterintui�ve.

 2. As the LBS algorithm was implemented in GLSL, we didn’t manage to find out how to
 access the coordinates of the ver�ces during the anima�on, which is something we
 needed, for example, for the op�miza�on of facial coordinates.

 Eventually, due to the disadvantages of OpenGL and the fact that we implemented
 non-real�me, we decided to implement a new render engine using only Python and a 3D
 plo�ng package named PyVista. We used numpy.einsum to implement the LBS part (which was
 implemented in the GLSL code in OpenGL) and used PyVista for rendering.

 Flow
 Here are two diagrams that show the flow of our logic. First diagram depicts the general flow
 our our input:

 This second diagram depicts the way we defined our minimiza�on problem and implemented it:

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html

 LiveCapCover Spring 2020

 Challenges and difficul�es
 While working on our project, we encountered natural challenges and difficul�es.
 First, the project required using many algorithms, libraries and code from different sources and
 projects that we weren’t familiar with. We had to learn, catch up and complete all the necessary
 knowledge that we didn’t have - from image processing, to model rendering and minimiza�on
 problems.
 We also had a few technical challenges. For instance, dealing with many different coordinate
 systems used to be confusing, such as in Blender and VIBE. To overcome this challenge we
 translated all input to the same coordinate system to make it easier for us to follow what we do.
 Implemen�ng LBS, where we had different coordinate systems for the joint and its parent, also
 required a�en�on to delicate ideas.
 Background subtrac�on is also something that we spent quite some �me on, trying to find the

 LiveCapCover Spring 2020

 best algorithm and condi�ons that should give a sa�sfying result.
 In general, like in any other project, knowing when and how to advance in your work is cri�cal
 and can be challenging. The ability to balance between digging into something and moving on
 with it was a great factor in our progress.

 Experiments & Results
 A�er ge�ng all the system up and running we performed several experiments:

 Experiment 1 - dance video + generic model
 In this experiment we used a video that we have downloaded from youtube,
 And a 3d model that was downloaded from the internet. We rigged the 3d model using blender,
 and used those for developing and tes�ng the system. Even that something was a li�le off with
 the skinning weights of the model, and some other elements were missing, we s�ll got some
 interes�ng results.

 Results
 ● We can observe that the mo�on es�mated by our program looks familiar to the input

 image, though that is far from perfect
 ● We can clearly see that the blending weights are not anatomically correct, due to the

 strange deforma�on of the model.
 ● Because the number of pose parameters, 3 for each joint instead of 1 as in the original

 paper, and due to the larger face and vertex count of our model of about 19,000
 ver�ces, the �me for each itera�on took much longer then expected.

 ● The large number of pose parameters combined with the fact that we did not have
 available the joint limits values lead to some of the es�mated posi�ons did not seem
 natural at all.

 LiveCapCover Spring 2020

 Experiment 2 - original video and model
 A�er trying to create our own models without success, we contacted one of the original writers
 of the paper that shared with us one of the videos and models used in their work.
 We downloaded the rigged model named ‘mohamad’ with it’s skinning informa�on, the first
 2000 frames of the video, and the camera calibra�on parameters from the site, and ran the
 system on them.

 Results
 ● The results look much more sa�sfying than the results with the previous experiment.
 ● The image appears a li�le ji�ery, this might be caused by large varia�on in the

 op�miza�on parameters. Might be solved by increasing the temporal cost weight or by
 adding some other cost.

 ● The mismatch between the model’s joints and the predic�on by the pose es�ma�on
 module is apparent, for example the difference in chin loca�on leads to the model to
 look down the en�re video and because of the larger distance in the hips the pose
 es�mated the legs are closer together then in the original video.

 ● We can see in some images that the model is lacking the ability to move in some way.

 LiveCapCover Spring 2020

 Experiment 3 - dropping parts from the cost and different weights
 We wanted to check how changing the balance between the different parts of the cost will
 affect the results. So we experimented with changing their weights, and with dropping (se�ng
 their weight to 0) some of the parts. We did a total of 5 experiments + the baseline(experiment
 3):

 Experiment / Weight

 0. Baseline 1 1e-3 1e-3 0.1 0.5

 1. No silhoue�e 1 1e-3 0 0.1 0.5

 2. High anatomic + temporal 1 1e-3 1e-3 1 2

 3. No Anatomic + temporal 1 1e-3 1e-3 0 0

 4 No 3d 0 1e-3 1e-3 0.1 0.5

 5. No 2d + silhoue�e 1 0 0 0.1 0.5

 Reasons behind the experiments:
 1. Dropping the silhoue�e energy - this part was a li�le bit problema�c on implemen�ng,

 and we wandered how much it affects our results?
 2. Using higher weights for the anatomic and temporal energies - we saw that the results

 from the first part seems to be kind of ji�ery, and we wondered if increasing the
 temporal and anatomic costs might improve on those?

https://www.codecogs.com/eqnedit.php?latex=%5Clambda_%7B3d%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_%7B2d%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_%7Bsilhouette%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_%7Btemporal%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_%7Banatomic%7D#0

 LiveCapCover Spring 2020

 3. On the opposite side, we wondered what will happen if we drop the anatomic and

 temporal costs?
 4. (& 5) Now, we asked ourselves, is both the 2d and the 3d points necessary, or could we

 just use one of them? So we did 2 experiments - one without 2d loss and silhoue�e, and
 the second without the 3d loss.

 Results
 ● We did not observe significant reduc�on in the results when removing the 2d and

 silhoue�e terms.
 ● Increasing the regula�on (temporal and anatomical costs) did not significantly affect the

 results, but, completely removing them significantly reduced the quality of the results.
 ● Dropping the 3d loss leads to significant reduc�on in the accuracy. Complete movements

 like 360 rota�on, were completely missed. But the results became less ji�ery, that led us
 to believe that it might be caused by the 3d points.

 ● Unnatural movement when dropping anatomic.

 Conclusions
 ● The main difficulty in the solu�on is acquiring the model. If further work can be done on

 making this stage simpler and easier, it might make it easier to research this problem.
 ● The cost is composed of many different parts. Compressing the constraints might reduce

 the complexity of the method, and might make it much simpler. From the experiments
 we performed, it seems that the 3d pose es�ma�on part is the most effec�ve, thus it is
 worth inves�ng most of the efforts there.

 ● Calibra�on between the model and the predic�on model is very important. Might
 calibrate it with some automa�c method?

 ● It seems that the skeleton is created based on common sense, and not based on biology.
 Might we create a biologically correct skeleton that will lead to more realis�c results?

 LiveCapCover Spring 2020

 ● The importance of making the work publicly available - a lot of small details are hidden
 from the paper. Without the official code, it gets much harder to track down their
 answers and to reproduce the same results.

 Future Work
 Symbiosis between the pose es�ma�on, rigging, and skeleton op�miza�on modules. Because
 calibra�on between the 3 systems is required, and to do it manually is rela�vely hard and boring
 work, might we find a way to tune it automa�cally, or be�er, create a rela�on such that one
 improves the other?
 For example using the 3d pose es�ma�on to fit a skeleton and weights to the 3d model, then
 running the given op�miza�on, and feed the resul�ng joint posi�ons to fine tune the model to
 this specific person?

 Bibliography
 Useful Links
 Homogeneous coordinates:

 ● Math for Game Programmers: Understanding Homogeneous Coordinates
 ● Homogeneous Coordinates
 ● Projec�ve geometry and homogeneous coordinates | WildTrig: Intro to Ra�onal

 Trigonometry

 OpenGL:
 Youtube tutorials:

 ● OpenGL 3D Game Tutorials #1-10 (Java) , OpenGL Skeletal Anima�on Tutorials (Java)
 ● OpenGL (Python)
 ● OpenGL (C++)

 GitHub repositories:
 ● TheThinMatrix/OpenGL-Anima�on: A simple example of skeletal anima�on using

 OpenGL (and LWJGL).
 ● totex/Learn-OpenGL-in-python: All the source codes from my youtube tutorial series

 called "OpenGL in python".

 Works Cited

 Bogo, Federica, et al. “Keep It SMPL: Automa�c Es�ma�on of 3D Human Pose and Shape from a

 Single Image.” Computer Vision – ECCV 2016 Lecture Notes in Computer Science , 2016, pp.

https://www.youtube.com/watch?v=o1n02xKP138&t=1s&ab_channel=GDC
https://www.youtube.com/watch?v=JSLG8n_IY9s&ab_channel=Udacity
https://www.youtube.com/watch?v=q3turHmOWq4&ab_channel=InsightsintoMathematics
https://www.youtube.com/watch?v=q3turHmOWq4&ab_channel=InsightsintoMathematics
https://www.youtube.com/watch?v=VS8wlS9hF8E&list=PLRIWtICgwaX0u7Rf9zkZhLoLuZVfUksDP
https://www.youtube.com/watch?v=f3Cr8Yx3GGA&list=PLRIWtICgwaX2tKWCxdeB7Wv_rTET9JtWW
https://www.youtube.com/watch?v=LqPPvPKUfV4&list=PL1P11yPQAo7opIg8r-4BMfh1Z_dCOfI0y
https://www.youtube.com/watch?v=hPmEyAXdOdY&list=PLIbUZ3URbL0ESKHrvzXuHjrcLi7gxhBby
https://github.com/TheThinMatrix/OpenGL-Animation
https://github.com/TheThinMatrix/OpenGL-Animation
https://github.com/totex/Learn-OpenGL-in-python
https://github.com/totex/Learn-OpenGL-in-python

 LiveCapCover Spring 2020

 561–578., doi:10.1007/978-3-319-46454-1_34.

 “Discover Intelligent Photogrammetry with Metashape.” Agiso� Metashape , www.agiso�.com/.

 Engineering-Course. “Engineering-Course/LIP_JPPNet.” GitHub ,

 github.com/Engineering-Course/LIP_JPPNet.

 Founda�on, Blender. “Home of the Blender Project - Free and Open 3D Crea�on So�ware.”

 Blender.org , www.blender.org/.

 Habermann, Marc, et al. “LiveCap.” ACM Transac�ons on Graphics , vol. 38, no. 2, 2019, pp.

 1–17., doi:10.1145/3311970.

 Kocabas, Muhammed, et al. “VIBE: Video Inference for Human Body Pose and Shape

 Es�ma�on.” 2020 IEEE/CVF Conference on Computer Vision and Pa�ern Recogni�on

 (CVPR) , 2020, doi:10.1109/cvpr42600.2020.00530.

 Liang, Xiaodan, et al. “Look into Person: Joint Body Parsing & Pose Es�ma�on Network and

 a New Benchmark.” IEEE Transac�ons on Pa�ern Analysis and Machine Intelligence , vol.

 41, no. 4, 2019, pp. 871–885., doi:10.1109/tpami.2018.2820063.

 Mehta, Dushyant, et al. “VNect.” ACM Transac�ons on Graphics , vol. 36, no. 4, 2017, pp. 1–14.,

 doi:10.1145/3072959.3073596.

 Mehta, Dushyant, et al. “XNect.” ACM Transac�ons on Graphics , vol. 39, no. 4, 2020,

 doi:10.1145/3386569.3392410.

 MeshLab , www.meshlab.net/.

 Webb, Jarre�, and James Ashley. “Beginning Kinect Programming with the Microso� Kinect

 SDK.” 2012, doi:10.1007/978-1-4302-4105-8.

 Zivkovic, Z. “Improved Adap�ve Gaussian Mixture Model for Background Subtrac�on.”

 LiveCapCover Spring 2020

 Proceedings of the 17th Interna�onal Conference on Pa�ern Recogni�on, 2004. ICPR

 2004. , 2004, doi:10.1109/icpr.2004.1333992.

