
The Oracle

Determining Fitness-For-
Landing Probabilities

Overview: Autonomous Landing
Project Objectives
Find a safe landing place for a drone in a crowded
urban environment

• Do it fast

• Prevent collisions

• Provide performance guarantees (False positive/
False Negative)

• Implement and test in a simulation (phase 1) and
a live demo (phase 2)

P
u

b

S
u

b

P
u

b

S
u

b

Pub

Sub

Pub

Sub

Pub

Sub

Pub

Sub

The Oracle within the system

Global
Path

Planner

Decision
Making

Oracle

Local
Trajectory
Planner

Detection
and

Tracking

LIDAR

Depth
Camera

Vis
Camera

GPS/INS

Vis
Camera

3D Map
Database

P
u

b

S
u

b

P
u

b

S
u

b

P
u

b

S
u

b

P
u

b

S
u

b

P
u

b

S
u

b

Pre-
processing

P
u

b Sub Sub

Sub

Sub

Sub Sub

P
u

b
P

u
b

P
u

b
P

u
b

Sub Sub Sub

The Oracle within the system
• Extracting information from input images for the other modules

to use

Oracle Objective

• Given a single image of an urban environment

• Calculate for each pixel of the image its suitability for being part of a landing
spot

• Suitability is measured in the probability sense: the closer to one, the more
likely it is to be appropriate

• The Oracle is memoryless: assessment based on current image alone

Landing Site Fitness as a
Classification Problem
• Objects that can be observe in a city are classified into some finite set of

classes, each class is associated with an index from 0 ≤ 𝑐 ≤ 𝐶 − 1:

𝐶 = 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘, 𝑟𝑜𝑎𝑑, 𝑐𝑎𝑟, 𝑑𝑒𝑛𝑠𝑒 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛, …

• A 𝑆𝑐𝑜𝑟𝑒, measuring how suitable is a given pixel to be part of a landing site,
is attached to each class:

𝑆𝑐𝑜𝑟𝑒 𝑐 : 𝐶 → [0,1]

• This function is such that:
 Score(c)  0  the class is not suitable for landing
 Score(c)  1  the class is very suitable for landing

𝑆𝑐𝑜𝑟𝑒 𝑑𝑒𝑛𝑠𝑒 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = 0

𝑆𝑐𝑜𝑟𝑒 𝑟𝑜𝑎𝑑 = 0

𝑆𝑐𝑜𝑟𝑒 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘 = 1

Basically, We want to land on the
classes with the high scores

Semantic Segmentation

C
la

ss
 1

C
la

ss
 2

C
la

ss
 C

H

W

C

Model

• Semantic Segmentation is the task of classifying each pixel in an
image with the corresponding class it belongs to.

• As opposed to standard classification, the output of a semantic
segmentation algorithm is not a single class label, but the
probability for each of the classes, i.e. for each pixel [𝑖, 𝑗] we get
the vector:

(𝑝0 𝑖, 𝑗 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 0 , 𝑝1 𝑖, 𝑗 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 1 , …)

Selected Algorithms

• An extensive literature review was performed

• Two different semantic segmentation algorithms were found to be adequate
to solve the fitness problem, due to their relative high performance and low
runtime:
 Bilateral Segmentation Network for Real-time Semantic Segmentation
 Fast Semantic Segmentation Network

• These two algorithms are briefly reviewed next

BiSeNet: Bilateral Segmentation Network for
Real-time Semantic Segmentation
This model containing 2 paths - one with spatial information, where each
convolution is affected by a small number of inputs, and with moderate down
sampling, and a context path, with aggressive down sampling. Then they fuse
the 2 paths for the prediction.

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In Proceedings of the European
conference on computer vision (ECCV) (pp. 325-341).

Fast-SCNN: Fast Semantic Segmentation
Network
This model first down sample the image to 1:8 resolution feature map. Then
using the two-branch approach. One path for feature extraction using depth
wise separable convolutions and inverse residual blocks. The second path use
simple convolution and then aggregated with the first path.

Poudel, R. P., Liwicki, S., & Cipolla, R. (2019). Fast-scnn: Fast semantic segmentation
network. arXiv preprint arXiv:1902.04502.

Reduction Function
• The reduction function converts the class probabilities(=output of the

semantic segmentation) to safety scores.
𝑅: 0, 1 ஼ → 0, 1

• There are two methods for the reduction function: threshold and weighted
average

• Kernel smoothing might be applied for averaging the results.

C
la

ss
 1

C
la

ss
 2

C
la

ss
 C

H

W

C

H

W

Landing Zone
Scores

Reduction
Function

Reduction Function
• Threshold mode:

• For each pixel we take the class with the highest probability as predicted by the model. If the
probability is greater or equal to a given threshold, we substitute it with the corresponding landing
score.

𝑝𝑚𝑎𝑥 = max {𝑝 𝑖, 𝑗 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 𝑐 , 𝑐𝑚𝑎𝑥 − 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑡ℎ𝑎𝑡 𝑔𝑖𝑣𝑒𝑠 𝑝𝑚𝑎𝑥

𝑆𝑐𝑜𝑟𝑒 = ቊ
𝑆𝑐𝑜𝑟𝑒 𝑐 𝑝𝑚𝑎𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑝𝑚𝑎𝑥 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Weighted Average mode:
• For each pixel we compute the weighted average of the class probability distribution with the given

classes scores

𝑆𝑐𝑜𝑟𝑒 =
ଵ

஼
∑𝑝 𝑖, 𝑗 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠 𝑐 ⋅ 𝑆𝑐𝑜𝑟𝑒(𝑐)

• Kernel Smoothing:
• Using a blurring kernel each landing score is computed as the weighted average of neighboring scores.

Reduction Function

Smoothing

Reduction Input Image

Thres hold

Weighted
Average

Reduction To
Scores

Semantic
Segmentation

Downward
Facing
Camera

Decision
Making
Module

RGB image

𝐼 ∈ 0,1 ு×ௐ×ଷ

Class Probabilities
𝐶𝑃 ∈ 0,1 ு×ௐ× ஼

Score’s Map
𝑆𝑀 ∈ 0,1 ு×ௐ

Uses this information and other
data to select a landing site

Experiments
& Results

Experiment Setting:
• Dataset

 Created using AirSim on top of Unreal Engine
 Contains image and full pixel-wise labeling for each image
 Size of the training set is 995 images
 Size of the test set is 438 images

• Hardware
 Single CPU - Xeon(R) CPU E5-2683 v4 @ 2.10GHz
 Single GPU - GeForce RTX 2080

• Software
 Linux(Ubuntu)
 Python 3.8
 Pytorch 1.5

Semantic Segmentation Correctness:

Runtime Speeds (in m.s.):

Total time = (cpu input + output conversion) + (cuda oracle time)
- Fast-SCNN: (46 + 12) + (26) = 84ms = 11 FPS
- BiSeNet: (50 + 10) + 46 = 106ms = 9FPS

Integration
• Oracle is integrated and ready for phase 1 on the mission computer

• Receives continuously images and outputs the correct output to the decision-
making module

Conclusions
• We have chosen to base the oracle on semantic segmentation, over geometric

reconstruction, plane analysis.

• Implemented 2 segmentation models, and both achieved good results on the
simulated dataset.

• Got to runtime speeds of ~ 10 FPS

• Kept the module simple and flexible – the mode of operation can be
configured, and the definition of the landing site can be changed by
modifying the set of classes and their scores.

• Oracle is integrated into the mission computer

Future Work
• Transferring from simulation to the real-world

 Weak Supervision - train the segmentation models based on partial labeling,
for example by using image level classification labels or object bounding box
annotations in the images

• Transfer Learning
• Synthetic Data Set Augmentation: manipulating the synthetic data to look more

realistic or render it with different settings to force the model learn more meaningful
feature.

• Fine Tunning: train the segmentation model on a large dataset and then retrain last
layers on real world small dataset.

• Optimizations:
• Compiling model with TensorRT - TensorRT is offered by NVIDIA for optimizing deep learning

models resulting lighter and faster inference time.
• Software Optimization - profiling and optimizing the different parts in the module

