Concurrent Games with Multiple Topologies

Shaull Almagor and Shai Guendelman

Technion, Israel

Concurrent Games

- States
- Players
- Actions
- Transitions
- Objectives

Concurrent Games – Strategies

- Strategy $\sigma_p: States^+ \rightarrow Act$
- Strategy Profile
- Outcome

Blue: if the two last states are send1,ready then take action 0 otherwise take action 1

Red: always take action 1

Solution Concept

Nash Equilibrium (NE): a strategy profile such that no player can unilaterally deviate and improve her outcome.

Blue: always take 1	Blue: alternate 1 and 0
Red: always take 1	Red: alternate 0 and 1

Solution Concept

Nash Equilibrium (NE): a strategy profile such that no player can unilaterally deviate and improve her outcome.

NE existence problem: Given a concurrent game *G*, does there exist a NE in *G*?

Concurrent Games with Multiple Topologies

- What if players don't know their ports?
- Game Symmetry
- Multi-Topology Games (MTGs)

Multi-Topology Games (MTGs)

Blue: always take 1	Blue: alternate 1 and 0
Red: always take 1	Red: alternate 0 and 1
$Out_{t_1} = Ready, Send1, Ready, Send1,$ $Out_{t_2} = Ready, Send2, Ready, Send2,$	$Out_{t_1} = Ready, Send1, Ready, Send2,$ $Out_{t_2} = Ready, Send1, Ready, Send2,$
Blue wins $\{t_1\}$, Red wins $\{t_2\}$	Blue wins $\{t_1, t_2\}$, Red wins $\{t_1, t_2\}$
10,11 00 01 Send1 Ready Send2	10 00 01,11 Send1 Ready Send2
t_1	t_2 7

Solution Concept for MTGs

• Nash Equilibrium?

Nash Equilibrium (NE): a strategy profile such that no player can unilaterally deviate and *improve her outcome*.

- Multiple outcomes
- Deviation might affect topologies differently
- Idea use the set of winning topologies

When a Player Might Deviate?

- Greedy: Better outcome in at least one topology.
- **Conservative**: Outcomes are at least as good in all topologies, and better in at least one.
- **Counting**: Increase the number of winning topologies.

Conservative Nash Equilibrium

Conservative Nash Equilibrium (CNE): A strategy profile, such that no player can unilaterally deviate and win a topology that she is currently losing, without losing a topology that she is currently winning.

Blue = Red:

Last state is $s_0 \rightarrow$ take action 0 Last state is $s_1 \rightarrow$ take action 1 Blue wins $\{t_1, t_2\}$ Red wins $\{t_1\}$

10

CNE Existence Problem

Conservative Nash Equilibrium (CNE): A strategy profile, such that no player can unilaterally deviate and win a topology that she is currently losing, without losing a topology that she is currently winning.

CNE existence problem: Given an MTG G, does there exist a CNE in G?

Red

Red

Red

Eve

10

Eve

00

Three-Player Partial-Information Games

- Undecidable in the general case
- If **Eve** is *less informed* than **Adam** the problem is 2-EXPTIME complete

Chatterjee, K., & Doyen, L. (2014). Games with a weak adversary. *International Colloquium on Automata, Languages, and Programming*.

Contributions

- Multi-Topology Games
- Reduction to three-player partial-information games
- Border of decidability, MTGs as restricted form of partial-information

