
By Izo & Shai

1. Overview
● We describe what we did. More detailed description of the

original work of LiveCap can be found in the report.

● This presentation builds on the ideas bottom up, first we
describe the individual components, then how they are
joined together.

Road map:
1. Overview
2. Problem Description
3. Human 3D Modeling
4. Non-Linear Least Squares (NLLS) Optimization
5. Image Processing
6. Combining it all
7. Implementation
8. Experiments
9. Main Differences From The Original Work
10.Conclusions & Future Work

2. Problem
Description

Real Time Motion Capture

Our task is to capture the movement of a human from a video.

To Capture The Movement in our context means to recreate a 3d
model that moves similarly to the human observed in the
images.

Different uses: game industry, medical world...

Motion capture - from livecap paper

Left to right
1. The model in the

rest pose
2. Input image
3. Model without

texture
4. Model with

texture
5. Textured and

untextured model
from different
views

3. Human 3d
modelling

Representing Geometrical Shapes
● This is done by approximating the shape with many small

polygons - a Mesh.
● The polygons here are called Faces, and are here

triangles.
● Each face is composed out of vertices, connected by

edges.
● Vertices are points in 3d space.

3d mesh - can see vertices, faces, edges - from pyvista docs

Movement Model
● We use a movement model called Linear Blend Skinning

(LBS).
● We have a skeleton that is an hierarchical set of joints.
● Each joint has a parent (or is the root), and a set of

transformations.

● T_joint_to_parent is the rigid transformation from a joint to its parent
joint.

● T_joint_to_model is a transformation from the joint space to the model
space.

● T_model_to_joint is a transformation from the model space to joint space.

Skeleton Movement - a single joint movement(spine) affects all its children - blender

Movement Model (cont.)
● Each vertex, joint pair has an associated weight, s.t.

All of the weights associated with that vertex are summed
up to 1.

● weight(i,j) means, how much vertex v_i is affected by
joint j.

● Most of the weights are 0.

Same model shape change after the rotation of the spine joint - blender

4. Non-Linear
least squares
optimization

NLLS
● Least Squares is a minimization problem, where we have

some vector function f, that we try to find the argument
to this functions that yields the minimum value in terms
of the L2 norm:

NLLS (cont.)
● When f is a linear function, we have a closed form

solution.
● When f is non-linear, we usually iteratively solve for

the optimal parameters, by using first(linear) or second
(quadratic) approximations.

● There are many methods for solving NLLS, the paper uses
Gauss-Newton method, we use Levenberg–Marquardt.

● To use NLLS solvers, we need to formulate our problem
with a vector valued cost function, that is f.

5. Image
processing

Projection and camera calibration
● Camera model parameter
● The projection operator

A - intrinsic parameters, camera matrix
R - extrinsic parameters

● Camera calibration: finding A

A R|t

Silhouette extraction
● Background subtraction
● Silhouette extraction using Laplacian operator
● Image Distance Transform

Input image Foreground
mask

silhouette IDT
(logscaled)

3d & 2D pose estimation
● VNECT

○ Input: sequence of monocular images
○ Output: 2d and 3d joint positions
○ Image is passed through a CNN, producing heatmaps
○ Heatmaps are passed through a temporal filter and skeleton fitting

stage

3d & 2D pose estimation
● VIBE

○ Input: sequence of monocular images
○ Output: SMPL body shape and pose parameters (~90).
○ The input is passed through a CNN feature extractor
○ Features are combined over time using RNN
○ Training uses additional Discriminator to make sure that the output

parameters are realistic.

6. Combining it
all

Combining It All
● We formulate our problem as a NLLS.
● The parameters that we optimize are the root rigid

transformation and the joints angles.
● We use our Motion Model and the outputs of the Image

Processing to define our cost function, also called
Energy.

Energy

● The parameters to the energy is the root translation +
rotation + joint angles.

● Is composed of different parts, those are derived either
from matching our model to the current frame(silhouette,
3d, 2d), or based on prior knowledge on the movement of
humans(temporal, anatomic).

● For each part we add weights to balance.

The difference between the
predicted 3d joint positions
and the models 3d joint
positions

The difference between the predicted 2d
joint positions and the projected model’s
joints

The distance transform of the silhouette
at the pixels of the projected contour
vertices.

The b in the formula is a special term to
give us the correct sign when the point is
inside the silhouette

This is the difference in the model’s joint position w.r.t
the previous frame estimated pose.

This can also be interpreted as the velocity of the joint.

For each joint angle we have an upper and a lower limit.

If we pass one of those limits, then we add the difference to
the energy of the pose.

7.
Implementation

Implementation - code and packages
● Anaconda package manager
● Github for collaboration
● Python 3.7 - surprisingly fast when used correctly.
● Numpy 1.17 - fast array operations
● Scipy 1.4 - NLLS solvers and rotations
● OpenCV 4.1 - part of the image processing
● Pytorch 1.4 - VIBE
● Pyvista 0.25 - visualizations
● Pycollada 0.4 - 3d I/O
● ...

8. Experiments

Exp. 1 - Dance + generic model
For development and testing we used a video downloaded from
youtube + a generic human body rigged with blender

Exp. 1 - Conclusions
● Can see that the blending weights are not good, and

create some unnatural movement.
● Large number of vertices slows down the optimization.
● Large number of DOFs (3 for each joint) slows down

optimization, and leads to some of the unnatural
movement.

● Still it kind of works.

Exp. 2 - Original video + model:
Here we used the resources shared by livecap authors, after
we had troubles creating our own models.

Exp 2. Conclusions
● The results look much more satisfying.
● Reducing the number of vertices from ~19,000 to ~5,000

and reducing the number of DOFs from ~90 to ~30 greatly
improved the runtime speeds, getting to almost real time
speeds on a pc alone.

● Some mismatch exists in the mapping from predicted joint
locations and model joint location, the results of this
can be seen in the video.

● The predictions are a little bit jittery, this might be
to due low weight of the temporal energy.

Exp 3. Balancing the energies
We tried changing the balances between the different energies
and even dropping some of them.

Experiment / Weight 3d 2d silhouette temporal anatomic

0. Baseline 1 1e-3 1e-3 0.1 0.5

1. No silhouette 1 1e-3 0 0.1 0.5

2. High anatomic + temporal 1 1e-3 1e-3 1 2

3. No Anatomic + temporal 1 1e-3 1e-3 0 0

4 No 3d 0 1e-3 1e-3 0.1 0.5

5. No 2d + silhouette 1 0 0 0.1 0.5

Exp 3. Sample results
1. No 3d loss
2. No 2d and silhouette loss
3. No regulation (anatomic + temporal)

1. No 3d Loss

2. No 2d and silhouette

3. No Regulation

Exp 3. Conclusions
1. Dropping 3d cost significantly reduces the quality of the

results
2. Dropping both 2d and silhouette cost is not as

significant
3. Dropping the regulatory terms in the cost results in

unnatural movement

9. Differences
From the Original

Work

Differences
● The paper also goes through the model acquisition stage

and the non-rigid optimization stage. We did not recreate
that due to a lack of time.

● We choose to use Python. The programing language use by
the authors is not clearly stated, but we estimate that
it was a combination of C++ and MATLAB.

● We did not get real-time results, mainly because we run
without gpu, and of the frameworks used.

● We used VIBE instead of VNECT, because we were not able
to run it in our computers.

10. Conclusions &
Future Work

Conclusions & Future Work
● The importance of making your implementation publicly

available
● 3 separate parts - pose estimation, skeleton optimization

and model rigging, maybe letting them benefit from each
other might prove useful, for example:
○ using the pose estimation module to automatically rig the model
○ fine tuning the pose estimation model using the optimization results

to the specific model, to reduce the number of iterations

● Implementing the non-rigid deformation might yield
farther insight.

