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1. Overview
● We describe what we did. More detailed description of the 

original work of LiveCap can be found in the report.

● This presentation builds on the ideas bottom up, first we 
describe the individual components, then how they are 
joined together.



Road map:
1. Overview
2. Problem Description
3. Human 3D Modeling
4. Non-Linear Least Squares (NLLS) Optimization
5. Image Processing
6. Combining it all
7. Implementation
8. Experiments
9. Main Differences From The Original Work
10.Conclusions & Future Work



2. Problem 
Description



Real Time Motion Capture

Our task is to capture the movement of a human from a video.

To Capture The Movement in our context means to recreate a 3d 
model that moves similarly to the human observed in the 
images.

Different uses: game industry, medical world...



Motion capture - from livecap paper

Left to right
1. The model in the 

rest pose
2. Input image
3. Model without 

texture
4. Model with 

texture
5. Textured and 

untextured model 
from different 
views 



3. Human 3d 
modelling



Representing Geometrical Shapes
● This is done by approximating the shape with many small 

polygons - a Mesh.
● The polygons here are called Faces, and are here 

triangles.
● Each face is composed out of vertices, connected by 

edges. 
● Vertices are points in 3d space. 



3d mesh - can see vertices, faces, edges - from pyvista docs



Movement Model
● We use a movement model called Linear Blend Skinning 

(LBS).
● We have a skeleton that is an hierarchical set of joints.
● Each joint has a parent (or is the root), and a set of 

transformations.

● T_joint_to_parent is the rigid transformation from a joint to its parent 
joint.

● T_joint_to_model is a transformation from the joint space to the model 
space. 

● T_model_to_joint is a transformation from the model space to joint space. 



Skeleton Movement - a single joint movement(spine) affects all its children - blender



Movement Model (cont.)
● Each vertex, joint pair has an associated weight, s.t. 

All of the weights associated with that vertex are summed 
up to 1.

● weight(i,j) means, how much vertex v_i is affected by 
joint j.

● Most of the weights are 0.



Same model shape change after the rotation of the spine joint - blender



4. Non-Linear 
least squares 
optimization



NLLS
● Least Squares is a minimization problem, where we have 

some vector function f, that we try to find the argument 
to this functions that yields the minimum value in terms 
of the L2 norm:



NLLS (cont.)
● When f is a linear function, we have a closed form 

solution.
● When f is non-linear, we usually iteratively solve for 

the optimal parameters, by using first(linear) or second 
(quadratic) approximations.

● There are many methods for solving NLLS, the paper uses 
Gauss-Newton method, we use Levenberg–Marquardt.

● To use NLLS solvers, we need to formulate our problem 
with a vector valued cost function, that is f.



5. Image 
processing



Projection and camera calibration
● Camera model parameter 
● The projection operator

A - intrinsic parameters, camera matrix
R - extrinsic parameters

● Camera calibration: finding A

A R|t



Silhouette extraction
● Background subtraction
● Silhouette extraction using Laplacian operator
● Image Distance Transform

Input image Foreground 
mask

silhouette IDT 
(logscaled)



3d & 2D pose estimation
● VNECT

○ Input: sequence of monocular images
○ Output: 2d and 3d joint positions
○ Image is passed through a CNN, producing heatmaps
○ Heatmaps are passed through a temporal filter and skeleton fitting 

stage



3d & 2D pose estimation
● VIBE

○ Input: sequence of monocular images
○ Output: SMPL body shape and pose parameters (~90).
○ The input is passed through a CNN feature extractor
○ Features are combined over time using RNN
○ Training uses additional Discriminator to make sure that the output 

parameters are realistic.



6. Combining it 
all 



Combining It All
● We formulate our problem as a NLLS.
● The parameters that we optimize are the root rigid 

transformation and the joints angles.
● We use our Motion Model and the outputs of the Image 

Processing to define our cost function, also called 
Energy. 



Energy

● The parameters to the energy is the root translation + 
rotation + joint angles.

● Is composed of different parts, those are derived either 
from matching our model to the current frame(silhouette, 
3d, 2d), or based on prior knowledge on the movement of 
humans(temporal, anatomic).

● For each part we add weights to balance.



The difference between the 
predicted 3d joint positions 
and the models 3d joint 
positions



The difference between the predicted 2d 
joint positions and the projected model’s 
joints



The distance transform of the silhouette 
at the pixels of the projected contour 
vertices.

The b in the formula is a special term to 
give us the correct sign when the point is 
inside the silhouette



This is the difference in the model’s joint position w.r.t 
the previous frame estimated pose.

This can also be interpreted as the velocity of the joint.



For each joint angle we have an upper and a lower limit.

If we pass one of those limits, then we add the difference to 
the energy of the pose.





7. 
Implementation



Implementation - code and packages
● Anaconda package manager
● Github for collaboration
● Python 3.7 - surprisingly fast when used correctly.
● Numpy 1.17 - fast array operations
● Scipy 1.4 - NLLS solvers and rotations
● OpenCV 4.1 - part of the image processing
● Pytorch 1.4 - VIBE
● Pyvista 0.25 - visualizations
● Pycollada 0.4 - 3d I/O
● ...



8. Experiments



Exp. 1 - Dance + generic model
For development and testing we used a video downloaded from 
youtube + a generic human body rigged with blender 



Exp. 1 - Conclusions
● Can see  that the blending weights are not good, and 

create some unnatural movement.
● Large number of vertices slows down the optimization.
● Large number of DOFs (3 for each joint) slows down 

optimization, and leads to some of the unnatural 
movement.

● Still it kind of works.



Exp. 2 - Original video + model:
Here we used the resources shared by livecap authors, after 
we had troubles creating our own models.





Exp 2. Conclusions
● The results look much more satisfying.
● Reducing the number of vertices from ~19,000 to ~5,000 

and reducing the number of DOFs from ~90 to ~30 greatly 
improved the runtime speeds, getting to almost real time 
speeds on a pc alone.

● Some mismatch exists in the mapping from predicted joint 
locations and model joint location, the results of this 
can be seen in the video.

● The predictions are a little bit jittery, this might be 
to due low weight of the temporal energy.



Exp 3. Balancing the energies
We tried changing the balances between the different energies 
and even dropping some of them.

Experiment  / Weight 3d 2d silhouette temporal anatomic

0. Baseline 1 1e-3 1e-3 0.1 0.5

1. No silhouette 1 1e-3 0 0.1 0.5

2. High anatomic + temporal 1 1e-3 1e-3 1 2

3. No Anatomic + temporal 1 1e-3 1e-3 0 0

4 No 3d 0 1e-3 1e-3 0.1 0.5

5. No 2d + silhouette 1 0 0 0.1 0.5



Exp 3. Sample results
1. No 3d loss
2. No 2d and silhouette loss
3. No regulation (anatomic + temporal)



1. No 3d Loss



2. No 2d and silhouette



3. No Regulation



Exp 3. Conclusions
1. Dropping 3d cost significantly reduces the quality of the 

results
2. Dropping both 2d and silhouette cost is not as 

significant
3. Dropping the regulatory terms in the cost results in 

unnatural movement 



9. Differences 
From the Original 

Work 



Differences
● The paper also goes through the model acquisition stage 

and the non-rigid optimization stage. We did not recreate 
that due to a lack of time.

● We choose to use Python. The programing language use by 
the authors is not clearly stated, but we estimate that 
it was a combination of C++ and MATLAB.

● We did not get real-time results, mainly because we run 
without gpu, and of the frameworks used. 

● We used VIBE instead of VNECT, because we were not able 
to run it in our computers.



10. Conclusions & 
Future Work



Conclusions & Future Work
● The importance of making your implementation publicly 

available
● 3 separate parts - pose estimation, skeleton optimization 

and model rigging, maybe letting them benefit from each 
other might prove useful, for example:
○ using the pose estimation module to automatically rig the model
○ fine tuning the pose estimation model using the optimization results 

to the specific model, to reduce the number of iterations

● Implementing the non-rigid deformation might yield 
farther insight.


